THEORY OF NONSETS

Daniel Parrochia

Collectivizing relations

One often think of sets as displaying the following characteristics (among others): (1) no set is a member of itself; (2) sets (unlike properties) have their extensions essentially; hence no set can exist if one of its members has not; (3) sets form an iterated structure : at the first level, sets whose members are nonsets, at the second, sets whose members are nonsets or first level sets, etc. Cantor also inclined to think of sets as collections, i.e., things whose existence depends upon a certain sort of intellectual activity, a collecting or "thinking together". Here is Cantor's definition of sets in 1895 [Cantor 1932, p. 282] : By a "set" we understand any collection M into a whole of definite well-distinguished objects x of our intuition or our thought (which will be called the "elements" of M). For doing so, Bourbaki suggests that there must exist a relation R such that the x in question are put together into the whole. This one is named a "collectivizing relation" and noted as follows : $\operatorname{Coll}_{x} R$ says that R is collectivizing in x.

The problem of sets

One of the problem we can rise about such a definition is that many objects or beings in the world can form a collection without the result might be understood as a whole. Very often, it is not the case. Of course, a basic feature of reality is that there exist many things that we can collect. And when a multitude of given objects can be collected together, we arrive at a set. For example, there are two tables in this room. We are ready to view them as given both separately and as a unity, and justify this by pointing to them or looking at them or thinking about them either one after the other or simultaneously. Somehow the viewing of certain objects together suggests a loose link which seems to tie the objects together in our intuition. If the so-called objects are simple ones, there is no problem at all. If they are exactly the same, you can even add them. But suppose

